EOS - low dose 2D|3D imaging system

EOS is an imaging device which combines the use of a Nobel Prize-winning particle detector and an innovative linear scanning technique. With these two technologies, EOS enables whole body frontal and lateral images to be acquired simultaneously for a standing or seated patient, with a reduction in the dose of 50% compared to a DR system¹ and up to 85% compared to a CR system², with equal or superior image quality.

In less than 20 seconds, two full-body digital radiographs are taken, without image stitching or any cassette to handle: EOS is a real time-saver for patients and operators.

- Significant exposure dose reduction^{1,2} compared to Computed Radiography or Digital Radiography
- Micro Dose option, for follow-up measurements in pediatrics, with dose equivalent to a week's natural radiation exposure³
- Exceptional image quality
- Simultaneous acquisition of frontal and lateral images
- Continuous image (no "stitching") and true size (no magnification)
- Acquisition of full body or localized images of a seated or standing patient
- Total exam cycle time of around 4 minutes for a complete frontal and lateral spine examination¹

Specifications

2D imaging

- Images are obtained by vertical scanning
- Patient is in a standing or seated position
- Two simultaneous frontal and lateral acquisitions. Single plane acquisitions are also possible.
- The user-defined acquisition zone may cover the full body or a specific zone (spine, lower limbs, etc.) up to 44.8 cm wide and 175 cm high
- Image file size: between 2 MB and 70 MB depending on the acquisition area
- Acquisition is 5 to 10 seconds for a spine, less than 20 seconds for a whole body
- Automatic detector gain adjustment ensures maximum image contrast, regardless of kV being applied

Detectors

- 2 linear detectors, Nobel prize-winning AGD technology (Adjustable Gain Detector)
- Number of pixels/line: 1764/line, Pixel size: 254 μm
- Pixel depth: 16 bits (> 65 000 grey levels)
- Typical Dynamic Range: > 90dB

Tubes

- Two X-ray tubes, maximum power 42 kW
- Small or large focal spot (0.4 x 0.7mm / 0.6 x 1.3mm)
- Aluminum (1 mm) or Copper (0.1 mm) filtration

Acquisition software

- Patient information management compatible with DICOM 3.0 standard (Modality Worklist SCU)
- Selection of area of interest (height and width) and acquisition mode (biplane, frontal or lateral)
- Selection of morphotype and anatomical region
- Adjustment of kV, mA and acquisition speed (auto/manual)
- Display of radiation exposure dose (mGy.cm²)
- Image display and processing tools (windowing, zoom, measurements, secondary captures, annotations)
- Contrast enhancement (smooth, standard, strong) and specific processing if there is a prosthesis present, available at acquisition or during post-processing. The types of default processing and contrast enhancement are set up during applications training
- Image print SCU and print true size
- Archive on DICOM 3.0 PACS (Verification service and Image Storage SCU & SCP, Query Retrieve SCU, storage commitment SCU)
- Statistical tool for analyzing the number of rejected or repeated images (RRA)
- Automatic generation and sending of reports on the dose accumulated during the examination:
 - » RDSR (Radiation Dose Structured Report)
 - » MPPS (Modality Performed Procedure Step)

Dimensions

- External dimensions: 2 m (l) x 2 m (w) x 2.7 m (h)
 6.6 ft (l) x 6.6 ft (w) x 8.9 ft (h)
- Internal dimensions: 76 cm (l) x 76 cm (w) x 254 cm (h)/ 29.9 in (l) x 29.9 in (w) x 100 in (h)
- Width of patient access: 46 cm / 18.1 in

DON'T GUESS. SEE.

Accessories delivered with €0*S system*

Platform with footstep

- Removable platform including fixation support, a platform and a footstep
- Patient raised by: 30 cm / 11.8 in

Patient stabilization

- Stabilization bar: enables the stabilization of the patient for acquisitions of the lower limbs in AP
- Posture stabilization device: enables the stabilization of the patient using a pressure pad applied to the head for AP and PA examinations of the spine and the full body

Options

Micro Dose

- Indicated for pediatrics imaging with patient entrance dose of 10 to 90 µGy
- For the purpose of follow-up patient measurements in pediatrics (lower limb deformities, scoliosis angle trending...)
- Available for 3 anatomical regions: full spine, lower limbs, full body

Laser positioning system

- A laser positioning system⁴ is available as an option on customer request in order to expedite the definition of top and bottom limits of the scanning area by using two independent laser lines projected on a patient's skin
- This option comes in addition to the external metric scale and preview scan setting tools offered in the EOS system for the definition of the scanning area

Quality control accessories

• Equipment used for the Quality Control procedure provided by EOS imaging in accordance with the regulations in force

Microphone

 Microphone and loudspeaker to communicate with the patient in the cabin

EC conformity assessment: LNE/G-MED CE0459, Class IIb . For USA - Caution : Federal law restricts this device to sale by or on the order of a physician

¹ Comparison of radiation dose, workflow, patient comfort and financial break-even of standard digital radiography and a novel biplanar low-dose X-ray system for upright full-length lower limb and whole spine radiography. Dietrich TJ et al. Skeletal Radiol. 2013.

² Diagnostic imaging of spinal deformities: reducing patients radiation dose with a new slot-scanning X-ray imager. Deschenes S et al. Spine (Phila Pa 1976)2010 Apr 20;35(9):989-94.

³ EOS microdose protocol for the radiological follow-up of adolescent idiopathic scoliosis. Ilharreborde B. et al. Eur Spine J. 2015 Apr 24.

EOS imaging SA. 10 rue Mercoeur | 75011 Paris France | +33 (0) 155 25 60 60

EOS imaging Inc. 185 Alewife Brook Parkway #410 | Cambridge, MA 02138 USA | +1 (678) 564 5400

www.eos-imaging.com